Doctor of Philosophy (PhD) through 'Research Partnership Program' offered by the TCG-CREST and Department of Chemical Sciences, IISER Kolkata

Ph.D. Advertisement for Spring Semester 2023

The Department of Chemical Sciences (DCS) at IISER Kolkata and the TCG-CREST invite applications for regular Ph.D. programme in the Spring Semester, 2023 in the discipline of Chemistry.

Minimum Eligibility Criteria: Bright and motivated candidates who have passed M.Sc. examination with minimum 55% marks in any field of Chemistry or Physics. Besides satisfying minimal eligibility criteria, the candidates should have CSIR/UGC-NET JRF, INSPIRE fellowship or other Equivalent Fellowships.

In addition, the candidates who have valid **GATE** Score Card, CSIR/UGC-NET **LS** or other Equivalent National Eligibility Exam. may also apply for the PhD program through **TCG-CREST** funded fellowships (as per Govt. of India norm).

*Please note that fulfilling the minimum essential criteria does not ensure that a candidate will be called for the interview. **Additional** short-listing criteria might be set by the department based on academic records, experience and research interest of the candidates.

**Reservations for SC/ST/OBC/EWS/DIVYANG candidates are applicable as per Government of India rules.

Interview Dates: November 25-26, 2022

Mode of Interviews: The mode of interview will be '**Off-line**' for better interactions with the students appearing for the PhD interview. However, a candidate may be allowed for an online interview, if sufficient justifications is/are provided.

Please see below details of faculty members who are interested in admitting students under the 'Research Partnership Program':

Faculty Name	Research Area	Webpage	Positi
			on
Rahul Banerjee	Development of Porous Cathodes for	https://www.iiserkol.	01
	Li-ion Batteries	ac.in/web/en/people/f	
		<u>aculty/dcs/r-</u>	
		<u>banerjee/#gsc.tab=0</u>	
Sayan	Antiperovskite systems for energy	https://www.iiserkol.	01
Bhattacharyya	applications	ac.in/~sayanb/	
	or		
	Mixed dimensional heterostructures as		
	photocatalysts and electrocatalysis		
Alakesh Bisai	Development of Cost-Effective and	https://www.iiserkol.	01
	Non-Flammable based Non-Aqueous	ac.in/~alakesh/	
	Electrolyte for Effective Li-Metal and		
	Na-Metal Deposition.		
	and/or		
	Multielectron Redox Based Designing		
	and Synthesis of High Energy Density		
	Organic Molecules and Frameworks		
	for Battery Applications.		
Venkatraman	Green Hydrogen (H ₂) or	https://www.iiserkol.	01
Mahalingam	Carbondioxide (CO_2)/ Nitrogen (N_2)	ac.in/~nanolab/	V I
	Reduction		

Dept. of Chemical Sciences, IISER Kolkata

TCG-CREST, Kolkata:

Faculty Name	Research Area	Webpage	Pos itio n
Abhik Banerjee	1.Development of cost effective and non-flammable based non-aqueous electrolyte for effective Li metal and Na metal deposition.	https://www.tcgcrest. org/news/interview- of-abhik-banerjee- rise-tcg-crest/	04
	2. Designing and synthesis of Inorganic Li and Na based halide solid electrolytes for high energy density solid state battery applications.		
	3. Multielectron redox based designing and synthesis of high energy density Organic molecules and frameworks for Battery applications.		
Bidisa Das	1. Antiperovskite systems for energy applications	https://www.tcgcrest. org/people/dr-bidisa- das/	02
	2. Mixed dimensional heterostructures as photocatalysts and electrocatalysis		